山东省胶州市人。硕士生、博士生导师,主要研究方向为运筹与优化、机器学习和数据挖掘。 一、个人经历 2009.12-今 中国农业大学应用数学系,教授 2003.10—2005.9 日本京都大学 博士后 2002.12—2009.11 中国农业大学应用数学系 副教授 1999.9—2002.6 中国农业大学数学系,博士 1997.7—2002.11 中国农业大学数学系 助教,讲师 1990.9—1997.6 曲阜师范大学数学系 学士,硕士 二、基金项目 1.国家自然科学基金:基于先验知识的支持向量机的最优化模型与算法研究,2012.1-2015.12,主持 2.国家自然科学基金:粗糙双胞胎支持向量机算法的研究及应用,2012.1-2012.12,参加 3.国家自然科学基金:基于优化新技术的支持向量机的模型与算法研究,2007.1-2009.12,主持 4.教育部留学回国人员科研启动基金:最优化理论的新技术在支持向量机中的应用, 2007.1-2007.12,主持 5.中国农业大学科研启动基金: 优化新技术在支持向量机中的应用, 2006.1-2007.12,主持 6.国家自然科学基金:数据挖掘中的最优化方法,2004.1-2006.12,主要参加人 7.国家自然科学基金:使用PCG技术的不精确Newton法的理论研究及其应用,2001.1-2003.12,参加 8.中央高校基本业务科研基金“直推式支持向量机模型与算法研究”,2016.1-2016.12,主持 三、教学工作 主要讲授线性代数(本科生课程),支持向量机(研究生课程),长期参加线性代数重点课程建设。 《线性代数辅导教材》, 中国农业出版社,副主编,2009年.《高等数学》,科学技术文献出版社,副主编,2004年指导北京市大学生创新项目一项, 指导本科生URP一项。
四、发表论文 自1998年以来,发表论文60余篇。近年来发表的论文: 2017年 1. Huimin Pei, KuainiWang, Ping Zhong*, Semi-supervised matrixized least squares support vector machine, Applied Soft Computing, Accepted, 2017. (SCI,ESI前10%) 2. Yanyan Chen,Liyun Lu, Ping Zhong*, One-class support higher order tensor machine classifier, Applied Intelligence, 2017. DOI: 10.1007/s10489-017-0945-9 (SCI) 3. Huimin Pei, Yanyan Chen, Yankun Wu, Ping Zhong*, Laplacian total margin support vector machine based on within-class scatter, Knowledge-Based Systems, 119:152-165,2017. (SCI,ESI前10%) 4. Wenxin Zhu, Ping Zhong*, Minimum Class Variance SVM+ for Data Classification, Advances in Data Analysis and Classification, 11:79-96, 2017 (SCI ) 2016年 1.Yanyan Chen, Kuaini Wang, Ping Zhong*, One class support tensor machine, Knowledge-Based Systems, 96: 14–28, 2016. (SCI,ESI前10%) 2. Jing Jing Zhang, Ping Zhong*, Least squares one-class support vector machine on fuzzy set. International Journal of Control and Automation, 9(12): 249-260 2016. 3. Qiang Lin, Huimin Pei,Kuaini Wang, Ping Zhong* Privacy-preserving one-class support vector machine with vertically partitioned data, International Journal of Multimedia and Ubiquitous Engineering, 11(5),199-208, 2016. (EI) 4. Qiang Lin, Huimin Pei,Kuaini Wang, Ping Zhong*, Privacy-preserving one-class support vector machine with horizontally partitioned data, International Journal of Signal Processing, Image Processing and Pattern Recognition, 9(9) 333-342, 2016.(EI) 5.Yanyan Chen, Ping Zhong*,Linear one-class support tensor machine, International Journal of Signal Processing, Image Processing and Pattern Recognition, 9(9) 379-388, 2016.(EI) 2015年 1. Kuaini Wang, Wenxin Zhu and Ping Zhong*. Robust support vector regression with generalized Loss Function and Applications, Neural Processing Letters, 41:89–106, 2015. (SCI ) 2. Jingjing Zhang, .Kuaini Wang, Wenxin Zhu and Ping Zhong*, Least squares fuzzy one-class support vector machine for imbalanced data, International Journal of Signal Processing, Image Processing and Pattern Recognition, 8(8): 299-308, 2015. (EI) 2014年 1.Kuaini Wang, Ping Zhong*, Robust non-convex least squares loss function for regression with outliers, knowledge-Based Systems,71: 290-302, 2014. (SCI, ESI前10% ) 2. Wenxin Zhu, Ping Zhong*. A new one-class SVM based on hidden information, Knowledge-Based Systems, 60 : 35–43,2014. (SCI, ESI前10% ) 3.Kuaini Wang, Jingjing Zhang, Yanyan Chen, Ping Zhong*, Least Absolute Deviation Support Vector Regression, Mathematical Problems in Engineering, Volume 2014, Article ID 169575 (SCI) 4. Kuaini Wang, Ping Zhong*, Robust support vector regression with flexible loss function, International Journal of Signal Processing, Image Processing and Pattern Recognition, 7(4): 211-220, 2014. (EI) 5. Kuaini Wang, Zhiquan Han, Shuli Cui, Ping Zhong*, Flood runoff prediction using LS-SVR based on sliding time window. Journal of Information and Computational Science, vol. 11 (2): 641-647, 2014. (EI) 6. Wenxin Zhu, Kuaini Wang,Ping Zhong*, Improving support vector classification by learning group information hidden in the data, ICIC Express Letters, Part B: Applications, 5(3):781-786, 2014.(EI) 2013年 1. Yaohong Zhao, Jun liu, Ping Zhong*, Kuaini Wang, Sparse multiple kernel for least square support vector regression, Journal of Computaional Information Systems, 9(23):9593-9599, 2013 (EI) 2. Jun Liu, Wenxin Zhu, Ping Zhong*, A new multi-class support vector algorithm based on privileged infromation, Journal of Information and Computional Science, 10(2):443-450, 2013 (EI)
2012年 1. Ping Zhong*, Training robust support vector regression with smooth non-convex loss function, Optimization Methods and Software, 27(6): 1039-1058, 2012. (SCI ) 2. Ping Zhong*,Yitian Xu, Yaohong Zhao, Training twin support vector regression via linear programming, Neural Computing and Applications, 21(2): 399–407, 2012. (SCI) 3. Yitian Xu, Laisheng Wang,Ping Zhong, A rough margin-based v-twin support vector machine, Neural Computing and Applications,21 (6): 1307-1317, 2012. (SCI) 4.Yaohong Zhao, Ping Zhong*, A feature selection method for twin support vector regression, ICIC Express Letters, Part B: Applications, 3(1): 91-98,2012. (EI) 5.Liyuan Liu, Yohong Zhao, Ping Zhong*,Multiple Instance Classification Based on Least Squares Twin Support Vector Machine, Journal of Convergence Information Technology, 7( 6): 72-77, 2012. (EI) 6. Liyuan Liu, Jing Chen, Ping Zhong*, Successive Least Squares Support Vector Machine for Multiple Instance Classification, Journal of Information and Computational Science, 9(4): 813-819, 2012. (EI) 五、培养学生情况 已经毕业的博士生:赵耀红、朱文新、王快妮、张静静、陈艳燕 在读博士生:裴慧敏、林强 已经毕业的硕士生:赵耀红、王快妮、赵庄园、刘丽媛、刘俊、林强、李兰竹 在读硕士生:卢立云、王楠 指导的研究生在校期间获得奖励情况: 赵耀红 北京市优秀博士研究生毕业生;中国农业大学博士生科研成就奖;中国农业大学“三好研究生”称号;中国农业大学优秀研究生党员;中国农业大学博士研究生科研创新专项NO.KYCX2010105。 王快妮 研究生国家奖学金;北京市优秀博士研究生毕业生;中国农业大学研究生三好学生;中国农业大学博士研究生科研创新专项NO.2013YJ010。 张静静 中国农业大学博士一等学业奖学金。 刘俊 中国农业大学研究生学习优秀奖学金;中国农业大学理学院优秀研究生党员。 裴慧敏 2015年、2016年博士二等学业奖学金。 卢立云 2016年硕士二等学业奖学金。
|