科研项目: 1. 参与国家自然科学基金面上项目:椭圆曲线算术理论的若干问题研究,No.10771111 2. 参与国家自然科学基金面上项目:No.11071277 3. 参与国家自然科学基金青年项目:No. 11001145 4. 主持国家自然科学基金青年项目:Cohen-Lenstra 预测中若干问题的研究,No. 11101424 发表文章(含已接受): 1. Yan Li, Xianke Zhang, Global unit squares and local unit squares, J. Number Theory 128 (2008), no. 9, 2687—2694 2. Yan Li, Lianrong Ma, A note on the paper by K. Feng: “Non-congruent numbers, odd graphs and the Birch-Swinnerton-Dyer conjecture” [Acta Arith. 75 (1996), no. 1, 71--83; MR1379391], Acta Arith. 134 (2008), no. 3, 279--281. 3. Su Hu and Yan Li, A note on global units and local units of function fields, Acta Arith. 139 (2009), no. 1, 1--8. 4. Su Hu, Yan Li. The Genus fields of Artin-Schreier extensions. Finite Fields and Their Applications 16 (2010), 255-264 5. Yan Li, Lianrong Ma. On the Elements of the Continued Fractions of Quadratic Irrationals. The Fibonacci Quarterly. Volume 48 No.2 (2010) 129-136. 6. Su Hu, Yan Li. Bilinear character sums over norm groups. Publicationes Mathematicae Debrecen. Volume 78 No.2 (2011) 7. Su Hu, Yan Li. Error bounds for quasi-Monte Carlo integration for L∞ with uniform point sets. Monatshefte fur Mathematik. 3rd February 2011 online. 8. Su Hu, Yan Li. k-th power residue chains for global fields. Glasnik Mathematicki. Vol. 46, No.1 (2011), 11-14. 9. Yan Li, Lianrong Ma. Double coverings and unit square problem for cyclotomic fields. Int. J. Number Theory. to appear in Nov. 2011 投稿中: 10. Yan li, Lianrong Ma A question of Sarkozy and Sos on representation functions, arXiv:1108.1920. 11. Su Hu, Yan Li, On a uniformly distributed phenomenon in matrix groups, arXiv:1103.3928 12. Yan Li, Su Hu, Gauss sums over some matrix groups, arXiv:1105.4513 13. Yan Li, Su Hu, On the ratio of θ-congruent numbers, arXiv:1005.5579 教学工作: 2010.9-2011.6 解析几何,线性代数(工科),复变函数 奖励及其他: 2008年, 获清华大学综合一等奖学金-“清华之友-HITACHI日立化成奖学金” 2011 8.16-8.19,在韩国庆州东国大学举办的“函数域的算术及其相关领域”的学术会议上,作题为“矩阵群上的指数和及其应用”的报告。 2011 8.19-8.26, 访问位于韩国大田的Algebraic Structures and Application Research Centre, Korea Advanced Institute of Science and Technology 以及National Institute for Mathematical Science |